

1.

El conjunto de soluciones reales de la ecuación: $\begin{vmatrix} 2 & 3 & x \\ 2 & 1 & x^2 \\ 6 & 7 & 3 \end{vmatrix} = 0$ es:

- a) vacío.
- b) {0}.
- c) {1}. d) {1,-3}.
- e) $\{\sqrt{3}, -\sqrt{3}\}$.

2.

$$\sum_{n=2}^{\infty} \frac{1}{n!} = \dots$$

- a) 0.
- b) e 2.
- c) e 1.
- e) e + 1.

3.

¿Para qué valor de k la matriz $\begin{pmatrix} 3 & -1 \\ 1 & k \end{pmatrix}$ tiene un autovalor igual a 2?

- a) –2.
- b) 0.
- c) 1.
- d) 2.
- e) 3.

4.

Un punto se desplaza sobre la curva formada por la intersección de la superficie $z = \frac{x^2}{9} + \frac{y^2}{4}$ y el plano y = cte.

En x=3 la componente v_x de la velocidad vale 9 $\emph{m/s}$, el módulo de la velocidad en ese punto es aproximadamente:

- a) 9 m/s.
- b) 10.82 m/s.
- c) 9.85 m/s.
- d) No se puede calcular.
- e) 6 m/s.

5.

La derivada de la función $u = xy^2 + yz^2$ en el punto (1, 2, 1) en la dirección de la recta que pasa por dicho punto y por el (2, 3, 3) es:

a)
$$\frac{\partial u}{\partial r} = \frac{17}{\sqrt{6}}$$
.

b)
$$\frac{\partial u}{\partial r} = \frac{\sqrt{17}}{6}$$
.

c)
$$\frac{\partial u}{\partial r} = \sqrt{\frac{17}{6}}$$
.

d)
$$\frac{\partial u}{\partial r} = \sqrt{\frac{6}{17}}$$
.

e)
$$\frac{\partial u}{\partial r} = \frac{6}{17}$$
.

6.

Si x = x(t) e y = y(t), entonces $\frac{d^2y}{dx^2}$ =

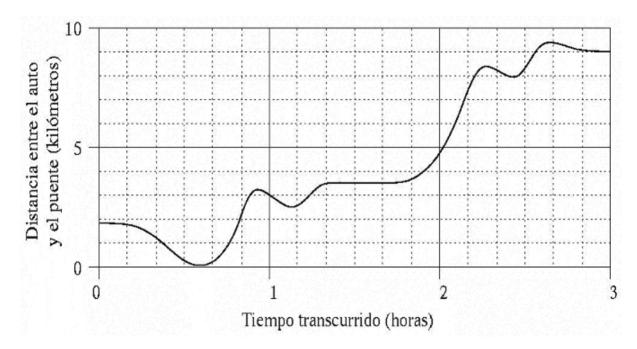
a)
$$\frac{\dot{x}\ddot{y} - \ddot{x}\dot{y}}{\left(\dot{x}\right)^3}$$
.

b)
$$\frac{\dot{y}\ddot{x} - \dot{x}\ddot{y}}{\left(\dot{y}\right)^3}$$
.

c)
$$\frac{\ddot{x}\ddot{y} - \ddot{x}\dot{y}}{\left(\dot{y}\right)^3}$$
.

d)
$$\frac{\dot{y}\ddot{x} - \dot{x}\ddot{y}}{\left(\dot{x}\right)^3}$$
.

e)
$$\frac{\dot{y}\ddot{x} - \dot{x}\ddot{y}}{\dot{y}\dot{x}^2}$$
.


Datos para los Problemas 7 – 8 y 9

Los problemas 7 – 8 y 9 se resuelven con los datos que se dan a continuación:

Un automóvil comienza un viaje a las 9:00 hs. Transita por una carretera perfectamente recta, y llega a destino al mediodía. Durante el viaje los siguientes eventos tienen lugar (no necesariamente en orden).

- ⇒ El automóvil se detiene y retrocede al menos una vez.
- ⇒ El automóvil cruza un puente situado entre los puntos extremos del viaje.

El siguiente gráfico muestra la distancia entre el automóvil y el puente en cada instante del viaje. En todo punto del gráfico la función tiene al menos derivada segunda definida.

7. ¿Cuántas veces durante el viaje, el automóvil detuvo su movimiento hacia adelante, y luego, sin retroceder, continuó su camino?

- a) Una.
- b) Dos.
- c) Tres.
- d) Cuatro.
- e) Ninguna.

8. ¿En cuál de los siguientes intervalos la velocidad del automóvil se estaba incrementando?

- a) 9:50-10:00.
 - b) 10:30-10:40.
 - c) 10:50-11:00.
 - d) 11:10-11:20.
 - e) Ninguno de los anteriores.

Examen de Selección Instituto Balseiro – 2000 Matemática

9.

Si f es la función cuyo gráfico se muestra arriba, ¿Cuál de las siguientes afirmaciones es cierta para f, la derivada de f?

- a) $f(t) \neq 0$ para 2 < t < 2.5.
- b) El valor mínimo de f'(t) es 0 para t entre 1 y 2.
- c) f(t) < 0 para 0.1 < t < 0.5.
- d) f(1.5) > 1.
- e) Ninguna de las anteriores.

10.

$$\lim_{x\to 0} \frac{(\sin x)^2}{e^x - x - 1}$$

- a) ∞.
- b) 0.
- c) 1.
- d) 2.
- e) + ∞.

.....

11.

Si f(x)=x|x| para todo x real, entonces f es diferenciable para

- a) ningún número real.
- b) sólo en 0.
- c) sólo números positivos.
- d) sólo números negativos.
- e) Todos los números reales.

12.

Si f(x) es una función diferenciable a todo orden que cumple $\frac{df(x)}{dx} = [f(x)]^2$ entonces la

derivada enésima de f(x) , $\frac{d^n f(x)}{dx^n}$ es

a)
$$n[f(x)]^n$$
.

b)
$$n![f(x)]^{n+1}$$
.

c)
$$(n+1) ! [f(x)]^{n+1}$$
.

d)
$$(n+1) [f(x)]^n$$
.

e)
$$n[f(x)]^{2n}$$
.

Sean $p \neq q$ constantes. Si $f(x) = p\sin(x) + qx\cos(x) + x^2$ para todo x real y f(2) = 3, entonces f(-2) es:

- a) -3.
- b) -1.
- c) 1.
- d) 5.
- e) falta información.

14.

Una solución de la ecuación $ix^2 - x + i = 0$ es:

a)
$$\frac{1}{2} - \frac{\sqrt{5}}{2}i.$$

d)
$$\left(-\frac{1}{2} - \frac{\sqrt{5}}{2}\right)i$$
.

b)
$$\left(\frac{1}{2} + \frac{\sqrt{5}}{2}\right)i.$$

e) Ninguna de las anteriores.

c)
$$\frac{1}{2} + \frac{\sqrt{5}}{2}i$$
.

15.

El conjunto de números complejos z que verifican $|\operatorname{Re} z| + |\operatorname{Im} z| \le \sqrt{2}|z|$ (Re, Im : parte real e imaginaria) en el plano complejo es:

- a) un círculo.
- b) una elipse.
- c) un semiplano.
- d) todo el plano.
- e) ninguno de los anteriores.

16.

El conjunto de números complejos z que verifican $\left|z-1\right|+\left|z+1\right|\leq 2$ en el plano complejo es:

- a) un círculo.
- b) una hipérbola.
- c) un segmento.
- d) un punto.
- e) dos puntos.

17.

Cuál de las siguientes superficies en **R**³ está totalmente contenida dentro de alguna esfera?

a)
$$x^2 + y^2 = 1$$
.

b)
$$x^2 - y^2 + z^2 + 2xy = 1$$
.

c)
$$x^2 + 2y^2 + z^2 - 2x = 1$$
.

d)
$$x^2 + 2y + 3z = 1$$
.

e) ninguna de las anteriores.

18.

Si
$$A = \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix}$$
 y $B = \begin{vmatrix} 0 & 1 \\ 2 & 3 \end{vmatrix}$, entonces $A.B = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$

a)
$$\begin{vmatrix} 4 & 7 \\ 8 & 15 \end{vmatrix}$$

b)
$$\begin{vmatrix} 4 & 8 \\ 7 & 15 \end{vmatrix}$$

c)
$$\begin{vmatrix} 3 & 4 \\ 11 & 16 \end{vmatrix}$$

d)
$$\begin{vmatrix} 3 & 11 \\ 4 & 16 \end{vmatrix}$$
.

e) Ninguna de las anteriores.

19

Se arroja un dado tres veces. ¿Cuál es la probabilidad de que el producto de los resultados sea par?

20.

Para aumentar la confiabilidad de un sistema se colocan 4 componentes cumpliendo la misma función. Cada uno de los componentes tiene una confiabilidad de 0.9. ¿Cuál será, aproximadamente, la confiabilidad del sistema con los 4 componentes en paralelo?
