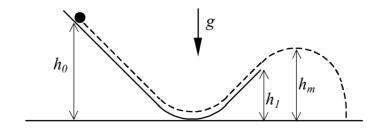


EXAMEN DE SELECCIÓN INSTITUTO BALSEIRO - 1999


PROBLEMA DE DESARROLLO

Se suelta una bolita en la parte superior de una rampa, como muestra la figura. Inicialmente la bolita está en reposo, a una altura h_0 con respecto al nivel del piso. La bolita baja por la rampa, recorre una pista en arco hasta una rampa ascendente que termina a una altura h_1 menor que la original.

Analice los casos:

- a) No hay rozamiento con la pista.
- b) El coeficiente de roce con la superficie es suficiente para que la bolita no resbale sobre la pista, sino que rueda sin deslizar en todo momento.
- c) El coeficiente de roce es pequeño, de tal manera que -al menos en parte de su recorrido- la bolita resbala por la pista.
- 1. Compare la altura máxima de cada caso $h_m(a)$, $h_m(b)$, $h_m(c)$ con los valores h_0 y h_1 .
- 2. Compare entre si las siguientes magnitudes:
 - 2.1- Las alturas máximas $h_m(a)$, $h_m(b)$ y $h_m(c)$.
 - 2.2- Las componentes verticales de la velocidad de la bolita v(a), v(b) y v(c) al chocar con el piso.
 - 2.3- Las energías cinéticas de traslación de la bolita E_t (a), E_t (b) y E_t (c) al chocar con el piso.
 - 2.4- Las energías cinéticas de rotación de la bolita E_r (a), E_r (b) y E_r (c) al chocar con el piso.
 - 2.5- Las energías cinéticas totales de la bolita $E_c(a)$, $E_c(b)$ y $E_c(c)$ al chocar con el piso.

<u>Justifique todos los resultados</u>. En caso de que los datos suministrados sean insuficientes para decidir una comparación, describa bajo qué condiciones se obtendría uno u otro resultado.

Sugerencia: Marque en un cuadro como el siguiente la/s respuesta/s correcta/s en cada línea, explique en hoja aparte.

1.
$$h_{m}(a) > h_{0} \qquad h_{m}(a) = h_{0} \qquad h_{0} > h_{m}(a) > h_{1}$$

$$h_{m}(b) > h_{0} \qquad h_{m}(b) = h_{0} \qquad h_{0} > h_{m}(b) > h_{1}$$

$$h_{m}(c) > h_{0} \qquad h_{m}(c) = h_{0} \qquad h_{0} > h_{m}(c) > h_{1}$$

$$h_{m}(a) = h_{1} \qquad h_{1} > h_{m}(a)$$

$$h_{m}(b) = h_{1} \qquad h_{1} > h_{m}(b)$$

$$h_{m}(c) = h_{1} \qquad h_{1} > h_{m}(c)$$

2.1
$$h_m(a) > h_m(b)$$
 $h_m(b) > h_m(c)$ $h_m(c) > h_m(a)$
 $h_m(a) = h_m(b)$ $h_m(b) = h_m(c)$ $h_m(c) = h_m(a)$
 $h_m(a) < h_m(b)$ $h_m(b) < h_m(c)$ $h_m(c) < h_m(a)$

2.2
$$v(a) > v(b)$$
 $v(b) > v(c)$ $v(c) > v(a)$
 $v(a) = v(b)$ $v(b) = v(c)$ $v(c) = v(a)$
 $v(a) < v(b)$ $v(b) < v(c)$ $v(c) < v(a)$

2.3
$$E_t(a) > E_t(b)$$
 $E_t(b) > E_t(c)$ $E_t(c) > E_t(a)$
 $E_t(a) = E_t(b)$ $E_t(b) = E_t(c)$ $E_t(c) = E_t(a)$
 $E_t(a) < E_t(b)$ $E_t(b) < E_t(c)$ $E_t(c) < E_t(a)$

2.4
$$E_r(a) > E_r(b)$$
 $E_r(b) > E_r(c)$ $E_r(c) > E_r(a)$
 $E_r(a) = E_r(b)$ $E_r(b) = E_r(c)$ $E_r(c) = E_r(a)$
 $E_r(a) < E_r(b)$ $E_r(b) < E_r(c)$ $E_r(c) < E_r(a)$

2.5
$$E_c(a) > E_c(b)$$
 $E_c(b) > E_c(c)$ $E_c(c) > E_c(a)$
 $E_c(a) = E_c(b)$ $E_c(b) = E_c(c)$ $E_c(c) = E_c(a)$
 $E_c(a) < E_c(b)$ $E_c(b) < E_c(c)$ $E_c(c) < E_c(a)$